Name: \qquad
Section: \qquad

1. Let

$$
A=\left[\begin{array}{ccc}
5 & -4 & -2 \\
-4 & 5 & 2 \\
-2 & 2 & 2
\end{array}\right]
$$

Using the fact that $\mathbf{v}_{1}=(-2,2,1)^{T}$ and $\mathbf{v}_{2}=(1,1,0)^{T}$ are eigenvectors for A, find an orthogonal basis for \mathbb{R}^{3} consisting of eigenvectors for A. (Hint: You don't need to solve the characteristic equation or find eigenspaces in this problem.)
2. Let $\mathcal{A}=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ and $\mathcal{B}=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$ be two bases for a vector space V, and suppose

$$
\mathbf{u}_{1}=\mathbf{v}_{1}-2 \mathbf{v}_{2}+3 \mathbf{v}_{3}, \quad \mathbf{u}_{2}=-\mathbf{v}_{1}+\mathbf{v}_{2}, \quad \mathbf{u}_{3}=4 \mathbf{v}_{2}-6 \mathbf{v}_{3} .
$$

Let $\mathbf{v}=\mathbf{u}_{1}+\mathbf{u}_{2}+\mathbf{u}_{3}$. Find $[\mathbf{v}]_{\mathcal{A}}$.

